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An Extension of the Analytical Solution of the
Ornstein-Zernike Equation with the Yukawa Closure
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The analytical solution of the Ornstein-Zernike equation with one Yukawa
closure of the factorizable-coefficient case is extended from the scalar-factoriza-
tion case to the vector-factorization case. As a result, the scaling parameter is
extended from a scalar quantity to a matrix quantity, and the scaling matrix f
is given by the physical solution of the matrix equation: f'2 + :f'+nfi£=().

1. INTRODUCTION

The analytical solution of the Ornstein-Zernike (OZ) equation has been
studied by many workers in the case of the hard sphere Yukawa closure:
for the one Yukawa case, the closure is
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where g i j (r) and c i j(r) are the radial distribution function and the direct
correlation function, respectively, and ai is the diameter of hard-spherical
particle of ith component of a fluid mixture. In the Baxter formalism, the
formal solution of the OZ equation with this closure is given by ( 1 , 2 )
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where dj is the column vector corresponding to its transposed vector
defined by

and K. is a M x M matrix whose (nm)-element is defined by

The extension is obvious in comparison of Eqs. (3) and (5); this would
make the application wider. Below, we shall denote a vector and a M x M
matrix by a bold-faced letter like dj and a hatted letter like M, respectively.

The aim of the present paper is to discuss the extension of the case of
Eq. (3) to that of Eq. (5). The main result is that all the coefficients above

where D is the function of F (see below). All the coefficients above are
given in terms of the rational functions of F.

Now, the factorizable case defined by Eq. (3) has been actually useful
in applications. An extension of the solution to the following matrix-
factorization case, however, would be more useful and interesting:

In fact, this case gives considerable simplifications for solving the system of
equations and reduces the problem to solving the following nonlinear equa-
tion for the single scaling parameter F: (3 ,5 )

The coefficients of the solution, Aj, Bj, Cij, and Dij, are defined to be
the physical solution of the system of nonlinear algebraic equations.(1,2)

Since the system of equations is too difficult to solve generally, one of the
present authors considered the following factorizable-coefficient case:(3,4)

where
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are given by the single scaling matrix f which is the physical solution of
the following matrix equation:

2. COEFFICIENTS IN THE MATRIX FACTORIZATION CASE

In the previous paper,(4) we discussed the Blum-H0ye solution(1,2) in
the following M-Yukawa case:

As was discussed there, this case actually gives the remarkable simplifica-
tion. The reduction of the problem to solving Eq. (4) for F, however, was
discussed only in the one Yukawa term case (M= 1). As far as the authors
are aware, in a more general case no one has discussed this kind of reduc-
tion except for Blum et al. (see also Section 4).(6)

Now, let us consider the following special case for Eq. (8):

It is obvious that the extension described in Section 1 is equivalent to the
special case of Eq. (8) with Eq. (9). Therefore, we shall follow our previous
work.(4,5) The special form of Eq. (5) and the basic assumption of the
Baxter formalism permit us to write the following expression for Dij:

where the vector aj is determined later. This is the key expression to make
the problem remarkably simple. As in the previous paper, we get the
following:

where £n = ^./p/a" with p, (the particle number density of lth component),
n = X3 = 1-^,



The functions in the equations above are defined as follows:

with

where

As seen from Eqs. (10-16), our problem is reduced to determining the
set of vectors: {aj, Bj}. This set is determined by the following equations(4):
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Since M and Hj are functions of { B j } as seen from Eq. (15) and Eqs.
(20)~(24), we can solve Eq. (17) and get a, in terms of functions of {Bj}.
The substitution of this result into Eq. (18) gives us equations for {B j}.
However, the equations would be too complicated to solve. As a matter of
fact, in the case of Eq. (1) with Eq. (3) the simple method-of-solution of
the equations has been given by Blum(7) and by Ginoza.(3-5) In the next
section, we will discuss that the same kind of simple method-of-solution
remains successful in the case of Eq. (1) with Eq. (5), as well.

3. THE SIMPLE METHOD-OF-SOLUTION

From the symmetry relation of Q i j ( A j i ) = Q j i (A i j ) , we get

Using Eqs. (17) and (25), we can successively transform the sum of the
third- and the forth-terms of Eq. (18) as follows:

where we used the definitions of (19), (20), and (21) in the second step and
also we used in the last step

this being obtained from Eq. (22) and the symmetry relation of g i j ( a j i ) =
g j i ( a i j ) . With the use of Eq. (26), Eq. (18) is written as

Thus, using Eqs. (23) and (25) we get

On the other hand, if we define r by



Equations (28) and (30) gives Eq. (7).

4. DISCUSSION

As pointed out in Section 2, obtaining all the coefficients in Eqs. (2a)
and (2b) is reduced to determining the set of vectors: {aj, Bj}. In order to
determine the set, we first regard Eqs. (15), (20), and (29) with Eq. (21) as
the system of coupled linear equations for {Xj}, {Bj} and AN. Then, we
solve the system and obtain expressions of Xj, Bj and AN in terms of func-
tions of f". Finally, we get /" as the physical solution of Eq. (7). Since the
system can be solved because of the linearity of the equations in respect of
{Xj}, {Bj} and AN, after all, our problem is reduced to solving Eq. (7).
The case of M = 1 produces the result in our previous work.(4,5)

As a matter of fact, the case of Eq. (8) without Eq. (9) was discussed
by Blum et al.(6) The many useful equations are obtained in their work. As
far as the present authors are aware, however, in this general case no one
has succeeded yet in giving such a simple method-of-solution for the equa-
tions as in the preceding section.
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from Eqs. (17), (25), (27), and (29) we get
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